Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMJ Open Gastroenterol ; 11(1)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378656

RESUMO

BACKGROUND: Colorectal cancer (CRC) is often accompanied by increased excretion of hydrogen sulfide (H2S). This study aimed to explore the value of exhaled H2S in the diagnosis of CRC. METHODS: A total of 80 people with normal colonoscopy results and 57 patients with CRC were enrolled into the present observational cohort study. Exhaled oral and nasal H2S were detected by Nanocoulomb breath analyser. Results were compared between the two groups. Receiver operating characteristic (ROC) curves were analysed and area under the curves (AUCs) were calculated to assess the diagnostic value of exhaled H2S. Meanwhile, the clinicopathological features, including gender, lesion location and tumour staging of patients with CRC, were also collected and analysed. RESULTS: The amount of exhaled H2S from patients with CRC was significantly higher than that of those with normal colonoscopy results. The ROC curve showed an AUC value of 0.73 and 0.71 based on oral and nasal H2S detection, respectively. The exhaled H2S in patients with CRC was correlated with gender, lesion location and tumour progression, including depth of invasion, lymphatic metastasis and TNM (Tumor, Lymph Nodes, Metastasis) staging. CONCLUSION: Exhaled H2S analysis is a convenient and non-invasive detection method for diagnosing CRC, suggesting a potential role in population screening for CRC.


Assuntos
Neoplasias Colorretais , Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/análise , Estadiamento de Neoplasias , Curva ROC , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia
2.
J Pharm Anal ; 13(3): 315-322, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37102107

RESUMO

Trace amines (TAs) are metabolically related to catecholamine and associated with cancer and neurological disorders. Comprehensive measurement of TAs is essential for understanding pathological processes and providing proper drug intervention. However, the trace amounts and chemical instability of TAs challenge quantification. Here, diisopropyl phosphite coupled with chip two-dimensional (2D) liquid chromatography tandem triple-quadrupole mass spectrometry (LC-QQQ/MS) was developed to simultaneously determine TAs and associated metabolites. The results showed that the sensitivities of TAs increased up to 5520 times compared with those using nonderivatized LC-QQQ/MS. This sensitive method was utilized to investigate their alterations in hepatoma cells after treatment with sorafenib. The significantly altered TAs and associated metabolites suggested that phenylalanine and tyrosine metabolic pathways were related to sorafenib treatment in Hep3B cells. This sensitive method has great potential to elucidate the mechanism and diagnose diseases considering that an increasing number of physiological functions of TAs have been discovered in recent decades.

3.
Nat Commun ; 13(1): 4291, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879296

RESUMO

Whether amino acids act on cellular insulin signaling remains unclear, given that increased circulating amino acid levels are associated with the onset of type 2 diabetes (T2D). Here, we report that phenylalanine modifies insulin receptor beta (IRß) and inactivates insulin signaling and glucose uptake. Mice fed phenylalanine-rich chow or phenylalanine-producing aspartame or overexpressing human phenylalanyl-tRNA synthetase (hFARS) develop insulin resistance and T2D symptoms. Mechanistically, FARS phenylalanylate lysine 1057/1079 of IRß (F-K1057/1079), inactivating IRß and preventing insulin from promoting glucose uptake by cells. SIRT1 reverse F-K1057/1079 and counteract the insulin-inactivating effects of hFARS and phenylalanine. F-K1057/1079 and SIRT1 levels in white blood cells from T2D patients are positively and negatively correlated with T2D onset, respectively. Blocking F-K1057/1079 with phenylalaninol sensitizes insulin signaling and relieves T2D symptoms in hFARS-transgenic and db/db mice. These findings shed light on the activation of insulin signaling and T2D progression through inhibition of phenylalanylation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Insulina , Resistência à Insulina/fisiologia , Camundongos , Fenilalanina , Sirtuína 1/genética
4.
FASEB J ; 36(5): e22281, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344214

RESUMO

Glutamine synthetase (Glul) is the enzyme that synthesizes endogenous glutamine, which is responsible for critical metabolic pathways and the immune system. However, the role of Glul in regulating endotoxin (lipopolysaccharide, LPS)-induced sepsis remains unclear. Here, we found that Glul expression in macrophages was significantly inhibited in endotoxemia, and that Glul deletion induced macrophages to differentiate into the pro-inflammatory type and aggravated sepsis in mice. Mechanistically, TLR4/NF-κB-induced alpha-ketoglutarate (α-KG) depletion inhibits Glul expression through H3K27me3-mediated methylation in septic mice. Both Glul overexpression with adeno-associated virus (AAV) and restoration by replenishing α-KG can alleviate the severity of sepsis. In conclusion, the study demonstrated that Glul can regulate LPS-induced sepsis and provides a novel strategy for the treatment of this disease.


Assuntos
Glutamato-Amônia Ligase , Sepse , Animais , Desmetilação , Endotoxinas/metabolismo , Endotoxinas/toxicidade , Glutamato-Amônia Ligase/metabolismo , Ácidos Cetoglutáricos , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Sepse/induzido quimicamente , Sepse/metabolismo
5.
Stem Cell Rev Rep ; 18(7): 2296-2314, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35279803

RESUMO

The intestinal epithelium undergoes rapid cell turnover to maintain the integrity of the mucosal barrier, which is driven by the proliferation and differentiation of intestinal stem cells (ISCs). Due to their properties, ISCs are not only vulnerable targets during intestinal damage, but also act as the resources responsible for repair and regeneration. Moreover, the intestinal tract is the largest immune organ in the body, with the greatest number of immune cells including, but not limited to, macrophages, innate lymphoid cells and T cells. With the advance of intestinal organoid culture systems and single-cell RNA sequencing, the effects of immune cells on ISCs have been initially explored. As a component of the stem cell niche, these activated immune cells and their corresponding cytokines directly modulate apoptosis or survival of ISCs, leading to either destruction or protection of the intestinal epithelium in immune-mediated diseases, such as inflammatory bowel disease and graft-versus-host disease. In this review, we describe the effects of various immune cells on ISCs, as well as the mechanisms underlying these effects. We also highlight the remarkable role of ISCs in intestinal pathogenesis and raise the possibility of developing novel and effective therapeutic strategies for immune-mediated diseases based on ISCs.


Assuntos
Imunidade Inata , Linfócitos , Citocinas , Mucosa Intestinal/patologia , Células-Tronco
6.
Adv Sci (Weinh) ; 9(20): e2103887, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35187863

RESUMO

Cancer cells are addicted to glutamine. However, cancer cells often suffer from glutamine starvation, which largely results from the fast growth of cancer cells and the insufficient vascularization in the interior of cancer tissues. Herein, based on clinical samples, patient-derived cells (PDCs), and cell lines, it is found that liver cancer cells display stem-like characteristics upon glutamine shortage due to maintaining the stemness of tumor initiating cells (TICs) and even promoting transformation of non-TICs into stem-like cells by glutamine starvation. Increased expression of glutamine synthetase (GS) is essential for maintaining and promoting stem-like characteristics of liver cancer cells during glutamine starvation. Mechanistically, glutamine starvation activates Rictor/mTORC2 to induce HDAC3-mediated deacetylation and stabilization of GS. Rictor is significantly correlated with the expression of GS and stem marker OCT4 at tumor site, and closely correlates with poor prognosis of hepatocellular carcinomas. Inhibiting components of mTORC2-HDAC3-GS axis decrease TICs and promote xenografts regression upon glutamine-starvation therapy. Collectively, the data provides novel insights into the role of Rictor/mTORC2-HDAC3 in reprogramming glutamine metabolism to sustain stemness of cancer cells. Targeting Rictor/HDAC3 may enhance the efficacy of glutamine-starvation therapy and limit the rapid growth and malignant progression of tumors.


Assuntos
Neoplasias Hepáticas , Linhagem Celular , Glutamato-Amônia Ligase , Glutamina/deficiência , Glutamina/metabolismo , Histona Desacetilases , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Fatores de Transcrição
7.
Can J Infect Dis Med Microbiol ; 2021: 8046368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900068

RESUMO

PURPOSE: Exhaled determination can detect metabolite hydrogen sulfide in the intestine. We aim to analyze the predictive value of hydrogen sulfide in the diagnosis of colorectal adenoma. METHODS: We recruited seventy patients diagnosed with colorectal adenoma as the observation group and sixty-six healthy subjects as the control group. The colorectal adenoma was diagnosed by colonoscopy at the Endoscopy Center of Huashan Hospital affiliated to Fudan University from June 2018 to November 2019. Exhaled gas was collected through the nose and mouth, respectively, and hydrogen sulfide in exhaled gas was determined according to the manufacturer's instructions. RESULTS: Receiver operating characteristic (ROC) curve was analyzed based on the exhaled data of the observation group and the control group. The ROC curve showed an area under ROC curve (AUC) 0.724 for nasal exhaled H2S, which had a diagnostic value. When nasal exhaled H2S was >13.3 part per billion (ppb), the sensitivity and the specificity of predicting colorectal adenoma were 57% and 78%, respectively. The exhaled H2S of the observation group was significantly different from that of the control group. The AUC value was 0.716 as a prognostic factor of colorectal adenoma. As exhaled H2S was >28.8 ppb, the sensitivity and the specificity of predicting colorectal adenoma were 63% and 77%, respectively. CONCLUSION: Exhaled and nasal H2S determination has a predictive value for colorectal adenoma as a novel and noninvasive method. Therefore, it is worth conducting more research to analyze exhaled and nasal H2S.

8.
Oncogenesis ; 10(11): 74, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772914

RESUMO

Aberrant lipid metabolism is an essential feature of hepatocellular carcinoma (HCC). Fatty acid transport protein-5 (FATP5) is highly expressed in the liver and is involved in the fatty acid transport pathway. However, the potential role of FATP5 in the pathogenesis of HCC remains largely unknown. Herein, we showed that FATP5 was downregulated in HCC tissues and even much lower in vascular tumor thrombi. Low expression of FATP5 was correlated with multiple aggressive and invasive clinicopathological characteristics and contributed to tumor metastasis and a poor prognosis in HCC patients. FATP5 inhibited the epithelial-mesenchymal transition (EMT) process and suppressed HCC cell migration and invasion, while silencing FATP5 had the opposite effects. Mechanistically, knockdown of FATP5 promoted cellular glycolytic flux and ATP production, thus suppressing AMP-activated protein kinase (AMPK) and activating its downstream signaling mammalian target of rapamycin (mTOR) to support HCC progression and metastasis. Activation of AMPK using metformin reversed the EMT program and impaired the metastatic capacity of FATP5-depleted HCC cells. Collectively, FATP5 served as a novel suppressor of HCC progression and metastasis partly by regulating the AMPK/mTOR pathway in HCC, and targeting the FATP5-AMPK axis may be a promising therapeutic strategy for personalized HCC treatment.

9.
Biomed Res Int ; 2021: 1477345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35299827

RESUMO

As a known inhibitor of pyridoxal phosphate-dependent transaminase glutamic-oxaloacetic transaminase 1 (GOT1), aminooxyacetic acid (AOAA) has been pointed out to have potential pharmacological effects in antiepileptic, anticonvulsant, antibacterial, cancer cell proliferation inhibition, and acute myocardial infarction (MI) relief. However, its role in inflammatory bowel disease (IBD) has not been reported. Through the in vivo experiment of dextran sulfate sodium- (DSS-) induced colitis in mice, it was found that AOAA significantly attenuated the symptoms, signs, and pathological changes of colitis. In addition, AOAA treatment prevented gut barrier damages by enhancing the expression of zona occludens- (ZO-) 1, occludin, claudin-1, and E-cadherin and recovering the upregulation of the most abundant intermediate filament protein (vimentin). Moreover, the release of interleukin- (IL-) 1ß, IL-6, and tumour necrosis factor- (TNF-) α was suppressed, yet the level of IL-10 was upregulated by AOAA treatment compared to the model group. Furthermore, it was shown that AOAA administration boosted M2-like phenotype and effectively reduced M1 macrophage phenotype in the lamina propria of mouse colonic epithelium. Similarly, the effect of AOAA was verified in vitro. AOAA effectively inhibited the classically activated M1 macrophage phenotype and proinflammatory cytokine (IL-1ß, TNF-α, and IL-6) expression induced by lipopolysaccharide (LPS) and promoted M2-like phenotype. Collectively, this study reveals for the first time that short-term treatment of AOAA can significantly alleviate DSS-induced acute colitis by regulating intestinal barrier function and macrophage polarization, which provides a theoretical basis for the potential use of AOAA in the treatment of IBD.


Assuntos
Ácido Amino-Oxiacético/uso terapêutico , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/toxicidade , GABAérgicos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Gene ; 665: 67-73, 2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-29709639

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers worldwide and has recently become the second most common cause of cancer-related deaths in men of developing countries. Guanine nucleotide-binding protein (G protein) has been reported to be associated with the early process of HCC. In our previous study, GNAO1, one of members of G protein, was found to be down-regulated in HCC. Thus, the present study aimed to throw light upon the mechanism of the abnormal expression of GNAO1 in HCC. First, qPCR results from two HCC cell lines (SMMC-7721 and QGY-7703) confirmed the down-expression of GNAO1, followed by the validation of the methylation status of the promoter region by bisulfite sequence PCR (BSP). Moreover, 5-Aza-2'-deoxycytidine (DAC) with Trichostatin A (TSA) treatment made it much clear that GNAO1 transcription was inhibited by promoter hypermethylation, contributing to its low expression. It was further revealed that the silencing effect was regulated by methyltransferase 1 (DNMT1), and was further enhanced by transforming growth factor ß (TGF-ß). In addition, the up-regulation of GNAO1 with the help of recombinant plasmid was also found to accelerate cell apoptosis, confirmed by flow cytometry and western blotting analysis. All these results above indicated that the promoter hypermethylation of GNAO1 might play an important role in HCC, suggesting that it might be used as a promising biomarker for HCC diagnosis and targeted therapy.


Assuntos
Carcinoma Hepatocelular/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , DNA de Neoplasias/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/biossíntese , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA de Neoplasias/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/genética
11.
Cancer Lett ; 420: 26-37, 2018 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-29409972

RESUMO

Obesity is a major risk factor for hepatocellular carcinoma (HCC) and is typically accompanied by higher levels of serum dipeptidyl peptidase 4 (DPP4). However, the role of DPP4 in obesity-promoted HCC is unclear. Here, we found that consumption of a high-fat diet (HFD) promoted HCC cell proliferation and metastasis and led to poor survival in a carcinogen-induced model of HCC in rats. Notably, genetic ablation of DPP4 or treatment with a DPP4 inhibitor (vildagliptin) prevented HFD-induced HCC. Moreover, HFD-induced DPP4 activity facilitated angiogenesis and cancer cell metastasis in vitro and in vivo, and vildagliptin prevented tumor progression by mediating the pro-angiogenic role of chemokine ligand 2 (CCL2). Loss of DPP4 effectively reversed HFD-induced CCL2 production and angiogenesis, indicating that the DPP4/CCL2/angiogenesis cascade had key roles in HFD-associated HCC progression. Furthermore, concomitant changes in serum DPP4 and CCL2 were observed in 210 patients with HCC, and high serum DPP4 activity was associated with poor clinical prognosis. These results revealed a link between obesity-related high serum DPP4 activity and HCC progression. Inhibition of DPP4 may represent a novel therapeutic intervention for patients with HCC.


Assuntos
Carcinoma Hepatocelular/patologia , Quimiocina CCL2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dipeptidil Peptidase 4/sangue , Dipeptidil Peptidase 4/genética , Neoplasias Hepáticas/patologia , Obesidade/complicações , Animais , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/prevenção & controle , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/prevenção & controle , Masculino , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Obesidade/sangue , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Prognóstico , Ratos , Vildagliptina/administração & dosagem , Vildagliptina/farmacologia
12.
Sci China Life Sci ; 61(12): 1537-1544, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29270794

RESUMO

Berberine has been shown to reduce acute liver injury although the underlying mechanism is not fully understood. Because of the anatomic connection, the liver is constantly exposed to gut-derived bacterial products and metabolites. In this study, we showed that berberine has beneficial effects on both hepatotoxicity and intestinal damage in a rat model of chronic or acute liver injury. Microbiota transplantation from the rats with chronic hepatotoxicity could aggravate acute hepatotoxicity in mice treated with diethylnitrosamine (DEN). In rat models with gut homeostasis disruption induced by penicillin or dextran sulfate sodium (DSS), their fecal microbiota could also cause an enhanced hepatotoxicity of recipient mice. When treated with berberine, the DSS-induced enteric dysbacteriosis could be mitigated and their fecal bacteria were able to reduce acute hepatotoxicity in recipient mice. This study indicates that berberine could improve intestinal dysbacteriosis, which reduces the hepatotoxicity caused by pathological or pharmacological intervention. Fecal microbiota transplantation might be a useful method to directly explore homeostatic alteration in gut microbiota.


Assuntos
Berberina/farmacologia , Berberina/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/terapia , Disbiose/tratamento farmacológico , Disbiose/microbiologia , Transplante de Microbiota Fecal/normas , Intestinos/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Microbioma Gastrointestinal/efeitos dos fármacos , Homeostase , Intestinos/microbiologia , Intestinos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
13.
Cancer Lett ; 388: 1-11, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894955

RESUMO

Cancer cells display altered metabolic phenotypes characterized by a high level of glycolysis, even under normoxic conditions. Because of a high rate of glycolytic flux and inadequate vascularization, tumor cells often suffer from nutrient deficiency and require metabolic adaptations to address such stresses. Although tumor-initiating cells (T-ICs) have been identified in various malignancies, the cells' metabolic phenotypes remain elusive. In this study, we observed that liver T-ICs preferentially survived under restricted glucose treatment. These cell populations compete successfully for glucose uptake by preferentially expressing glucose transporters (GLUT1 and GLUT3), whereas inhibition of GLUT1 or GLUT3 abolished the survival advantage and suppressed the tumorigenic potential of liver T-ICs. Among signaling pathways related to T-ICs, IL-6/STAT3 was identified to be responsible for the elevation of glucose uptake in liver T-ICs under glucose limitation. Further investigation revealed that IL-6 stimulation upregulated GLUT1 and GLUT3 expressions in CD133+ cells, particularly during glucose deprivation. More importantly, inhibition of glucose uptake sensitized liver T-ICs to sorafenib treatment and enhanced the therapeutic efficacy in vivo. Our findings suggest that blocking IL-6/STAT3-mediated preferential glucose uptake might be exploited for novel therapeutic targets during hepatocellular carcinoma (HCC) progression.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/patologia , Glucose/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/patologia , Niacinamida/administração & dosagem , Niacinamida/uso terapêutico , Compostos de Fenilureia/administração & dosagem , Sorafenibe
14.
Hepatology ; 65(5): 1628-1644, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28027570

RESUMO

Potential biomarkers that can be used to determine prognosis and perform targeted therapies are urgently needed to treat patients with hepatocellular carcinoma (HCC). To meet this need, we performed a screen to identify functional genes associated with hepatocellular carcinogenesis and its progression at the transcriptome and proteome levels. We identified aldehyde dedydrogenase-2 (ALDH2) as a gene of interest for further study. ALDH2 levels were significantly lower at the mRNA and protein level in tumor tissues than in normal tissues, and they were even lower in tissues that exhibited increased migratory capacity. A study of clinical associations showed that ALDH2 is correlated with survival and multiple migration-associated clinicopathological traits, including the presence of metastasis and portal vein tumor thrombus. The result of overexpressing or knocking down ALDH2 showed that this gene inhibited migration and invasion both in vivo and in vitro. We also found that ALDH2 altered the redox status of cells by regulating acetaldehyde levels and that it further activated the AMP-activated protein kinase (AMPK) signaling pathway. CONCLUSION: Decreased levels of ALDH2 may indicate a poor prognosis in HCC patients, while forcing the expression of ALDH2 in HCC cells inhibited their aggressive behavior in vitro and in mice largely by modulating the activity of the ALDH2-acetaldehyde-redox-AMPK axis. Therefore, identifying ALDH2 expression levels in HCC might be a useful strategy for classifying HCC patients and for developing potential therapeutic strategies that specifically target metastatic HCC. (Hepatology 2017;65:1628-1644).


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas Experimentais/enzimologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , China/epidemiologia , Expressão Ectópica do Gene , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fígado/patologia , Neoplasias Hepáticas Experimentais/mortalidade , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Oxirredução , Distribuição Aleatória
15.
Oncol Lett ; 14(6): 6345-6354, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29344113

RESUMO

Although emerging evidence has indicated that single nucleotide polymorphisms (SNPs) in microRNAs (miRNAs) are associated with susceptibility to gastric cancer, a limited number of studies have revealed the underlying molecular mechanisms. In the present study, the results suggested that miR-1269a rs73239138 has a role in decreasing the risk of gastric cancer. The level of miR-1269a variant expression was significantly downregulated compared with the wild-type miR-1269a in the gastric cells (Fig. 1). Furthermore, overexpression of miR-1269a inhibited apoptosis of gastric cancer cells. Expression of the miR-1269a variant inhibited the function of miR-1269a by increasing the apoptotic rate and the expression of Bik, Bim and Bak was upregulated consistently. In addition, zinc-finger protein 70 (ZNF70) was identified to be a target gene of miR-1269a, which was downregulated by miR-1269a and upregulated by miR-1269a variant. ZNF70 was indicated to exert a role as a tumor suppressor in gastric cancer. To the best our knowledge, the present study for the first time highlights a critical role of miR-1269a variant rs73239138 in decreasing the susceptibility to gastric cancer by downregulating its expression and targeting ZNF70, which promotes apoptosis of gastric cancer cells. This SNP is indicated to serve as a potential biomarker and therapeutic target for gastric cancer.

17.
Exp Ther Med ; 12(4): 2554-2562, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27698758

RESUMO

Gut microbiota composition of patients with ulcerative colitis (UC) is markedly altered compared with healthy individuals. There is mounting evidence that probiotic therapy alleviates disease severity in animal models and patients with inflammatory bowel disease (IBD). Bacillus subtilisis, as a probiotic, has also demonstrated a protective effect in IBD. However, the therapeutic mechanism of its action has yet to be elucidated. In the present study, a dextrose sulfate sodium (DSS)-induced UC mouse model was used to investigate the role of B. subtilis in the restoration of gut flora and determine its effective dose. Mucosal damage was assessed by performing alcian blue staining, cytokine levels were analyzed by ELISA and microbiota composition was investigated using 454 pyrosequencing to target hypervariable regions V3-V4 of the bacterial 16S ribosomal RNA gene. The results demonstrated that a higher dose B. subtilisis administration ameliorated DSS-induced dysbiosis and gut inflammation by balancing beneficial and harmful bacteria and associated anti- and pro-inflammatory agents, thereby aiding intestinal mucosa recovery from DSS-induced injuries. These findings indicate that choosing the correct dose of B. subtilis is important for effective UC therapy. The present study also helped to elucidate the mechanisms of B. subtilis action and provided preclinical data for B. subtilis use in UC therapy.

18.
Nat Commun ; 7: 12992, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703150

RESUMO

Hepatitis B virus (HBV) can integrate into the human genome, contributing to genomic instability and hepatocarcinogenesis. Here by conducting high-throughput viral integration detection and RNA sequencing, we identify 4,225 HBV integration events in tumour and adjacent non-tumour samples from 426 patients with HCC. We show that HBV is prone to integrate into rare fragile sites and functional genomic regions including CpG islands. We observe a distinct pattern in the preferential sites of HBV integration between tumour and non-tumour tissues. HBV insertional sites are significantly enriched in the proximity of telomeres in tumours. Recurrent HBV target genes are identified with few that overlap. The overall HBV integration frequency is much higher in tumour genomes of males than in females, with a significant enrichment of integration into chromosome 17. Furthermore, a cirrhosis-dependent HBV integration pattern is observed, affecting distinct targeted genes. Our data suggest that HBV integration has a high potential to drive oncogenic transformation.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Transformação Celular Neoplásica , Ilhas de CpG , DNA Viral/genética , Feminino , Genoma Humano , Genoma Viral , Hepatite B Crônica/genética , Humanos , Estimativa de Kaplan-Meier , Cirrose Hepática/genética , Cirrose Hepática/virologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Análise de Sequência de RNA , Integração Viral
19.
Oncoimmunology ; 5(9): e1183850, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757296

RESUMO

Despite their central function in tumor immunity, dendritic cells (DCs) can respond to inhibitory signals and become tolerogenic, curtailing T cell responses in vivo. Here, we provide the evidence for an inhibitory function of signal regulatory protein (SIRP) α in DC survival and activation. In tumors from human liver cancer patients, infiltrative DCs expressed elevated levels of SIRPα, which is correlated with the induction of immune tolerance within the tumors. Silencing of SIRPα resulted in a significant increase in the longevity of antigen-pulsed DCs in the draining lymph nodes. In addition, SIRPα controls the activation and output of DCs. Silencing of DC-expressed SIRPα induced spontaneous and enhanced production of IL12 and costimulatory molecules, resulting in more potent cytotoxic T lymphocyte responses, including the eradication of previously established solid tumors. SIRPα exerted such effects, at least in part, via the association and sequestration of p85 subunit of PI3K. Thus, SIRPα is a critical regulator of DC lifespan and activity, and its inhibition might improve the clinical efficacy of DC-based tumor vaccines.

20.
Oncol Lett ; 12(1): 670-674, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27347198

RESUMO

Liver cancer has a high morbidity and mortality rate, and is one of the most common types of cancer in men. PNPLA7 is a member of the patatin-like phospholipase domain-containing protein family which is involved in triglyceride hydrolysis, energy metabolism and lipid droplet metabolism. The liver is the most important energy metabolism organ; whether PNPLA7 is deregulated in liver cancer has not been previously reported. In the present study, reverse transcription-quantitative polymerase chain reaction and subsequent methylation analysis provided evidence that PNPLA7 is down-regulated in hepatocellular carcinoma (HCC) cell lines and tissue samples, via the mechanism of transcriptional silencing by promoter hypermethylation. These results may provide novel insights for HCC diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...